Что понимают под стрелой времени. (Почти) обратимая стрела времени может привести нас к темной материи. Наглядное представление об энтропии

В своем романе «Посредник» Лесли Поулз Хартли пишет: «Прошлое - это чужая страна. Там все делается иначе - но почему прошлое столь отлично от будущего? Почему мы помним прошлое, а не будущее?» Другими словами, почему время движется вперед? Не связано ли это с расширением Вселенной?

С, Р, Т: ЗАРЯД, ЧЕТНОСТЬ, ВРЕМЯ

Законы физики не делают различия между прошлым и будущим. Точнее, они не изменяются, если провести операцию, именуемую СРТ(си-пи-ти)-преобразованием. Здесь латинская буква «С» обозначает замену частиц соответствующими им античастицами, «Р» - замену объекта его зеркальным изображением (в котором левое и правое меняются местами), «Т» - изменение направления движения всех частиц на противоположное (то есть обращение движения вспять). Законы физики, которые управляют поведением материи при нормальных условиях, не изменяются при операциях С и Р. Другими словами, жизнь будет той же самой для обитателей далекой планеты, созданных из антивещества и представляющих собой наши зеркальные отражения.

Если пришелец с другой планеты протянет вам левую руку, не пожимайте ее. Он может состоять из антиматерии. Вы оба исчезнете в чудовищной вспышке света. Если законы физики не изменяются при комбинировании операций С и Р, а также операций С, Р и Т, они должны сохраняться и при выполнении одной только операции Т. Однако в обычной жизни наблюдается огромная разница между двумя направлениями времени, то есть движением в прошлое и в будущее. Представьте себе, что чашка с водой падает со стола и разбивается вдребезги. Если снять это на кинопленку, вы легко определите, вперед или назад движутся события. Запустив пленку в обратном направлении, вы увидите, как осколки чашки собираются в единое целое и она запрыгивает обратно на стол. Вы сразу скажете, что лента запущена в обратном направлении, потому что предметы никогда не ведут себя подобным образом в повседневной жизни. Иначе производители столовой посуды давно прогорели бы.

СТРЕЛЫ ВРЕМЕНИ

Если вы спросите, почему разбитые чашки не собираются воедино и не взмывают на стол, вам ответят, что это запрещено вторым законом термодинамики. Он гласит, что беспорядок (энтропия) с течением времени может только возрастать. Другими словами, это так называемый закон Мерфи: события имеют тенденцию развиваться в худшую сторону. Состояние целой чашки на столе более упорядоченно, чем кучи осколков на полу. Поэтому переход от целой чашки на столе в прошлом к осколкам на полу в будущем естественен, а обратный - нет.

Возрастание беспорядка, или энтропии, с течением времени - один из примеров того, что называется стрелой времени, то есть чего-то, что сообщает времени направление и позволяет различать прошлое и будущее. Существуют по меньшей мере три различные стрелы времени. Прежде всего, термодинамическая, то есть направление времени, в котором возрастает беспорядок, или энтропия. Во-вторых, есть психологическая стрела времени. Это направление, соответствующее тому, как мы воспринимаем течение времени, помня прошлое, а не будущее. Наконец, имеется космологическая стрела времени - направление времени, в котором Вселенная расширяется, а не сжимается.

Я покажу, что психологическая стрела предопределяется термодинамической и они всегда указывают в одном на-правлении. Если принять предположение об отсутствии границы у Вселенной, окажется, что эти две стрелы связаны с космологической, хотя направления их не обязательно совпадают. Однако я приведу доводы в пользу того, что лишь совпадение направлений всех трех стрел допускает существование разумных существ, которые могут спросить: а почему, собственно, беспорядок нарастает в том же направлении во времени, в каком расширяется Вселенная?

ТЕРМОДИНАМИЧЕСКАЯ СТРЕЛА ВРЕМЕНИ

Я начну с рассмотрения термодинамической стрелы. Второй закон термодинамики основан на том, что число неупорядоченных состояний любой системы всегда намного превышает число упорядоченных. В качестве примера рассмотрим фрагменты пазла в коробке. Существует одна, и только одна, комбинация, при которой из разрозненных кусочков составляется картинка. С другой стороны, есть множество вариантов расположения, не заключающих в себе никакого смысла и не создающих целостного изображения.

Предположим, что некая система имела началом небольшой набор упорядоченных состояний. С течением времени система будет эволюционировать в соответствии с законами физики, и ее состояние изменится. Высока вероятность того, что позднее ее состояние станет более неупорядоченным, просто потому, что число неупорядоченных состояний очень велико. Таким образом, с течением времени беспорядок имеет тенденцию возрастать, если начальное состояние системы характеризовалось высокой упорядоченностью.

Пусть изначально фрагменты пазла уложены в коробке так, что составляют рисунок. Если мы встряхнем коробку, они сложатся иным образом. Скорее всего, это будет неправильное расположение, которое нарушит картинку, просто потому, что неправильных расположений очень много. Некоторые группы фрагментов все еще будут составлять части картинки, однако при долгом встряхивании и они наверняка рассыплются. Пазл придет в совершенно беспорядочное состояние, в котором его фрагменты не составляют никакой картинки. Таким образом, неупорядоченность фрагментов, вероятно, возрастет со временем, если они подчиняются начальному условию, требующему, чтобы исходное состояние системы было высоко упорядоченным.

Допустим, однако, что бог решил: пусть Вселенная в будущем завершит свое существование, пребывая в состоянии высокой упорядоченности, но ее начальное состояние не имеет никакого значения. Тогда в ранние времена Вселенная, вероятно, пребывала бы в неупорядоченном состоянии и степень неупорядоченности уменьшалась бы со временем. Осколки разбившихся чашек соединялись бы и вспрыгивали на стол. Однако человеческие существа, наблюдающие такие чашки, жили бы в мире, где беспорядок уменьшается с течением времени. Я приведу доводы в пользу того, что у таких людей психологическая стрела времени была бы направлена назад. Они бы помнили предстоящие времена и не помнили тех, что были раньше.

ПСИХОЛОГИЧЕСКАЯ СТРЕЛА ВРЕМЕНИ

Говорить о человеческой памяти очень трудно, потому что мы не знаем во всех деталях, как работает наш мозг. Однако мы знаем всё о том, как работает память компьютеров. Поэтому я буду рассматривать психологическую стрелу времени на примере компьютера. Мне кажется правомерным заключить, что стрела времени одинакова для вычислительных машин и для людей. Иначе можно было бы сорвать большой кущ на фондовой бирже при помощи компьютера, помнящего завтрашние цены на акции. Компьютерная память - это в основном некое устройство, которое пребывает в одном из двух состояний. Примером может служить сверхпроводящая проволочная петля. Если в ней есть электрический ток, он будет течь и течь, поскольку электрическое сопротивление в сверхпроводнике отсутствует. С другой стороны, при отсутствии тока петля будет существовать без него. Эти два состояния компьютерной памяти можно обозначить цифрами 1 и 0.

Прежде чем те или иные данные записаны в память, она имеет неупорядоченное состояние, которое с равной вероятностью описывается 1 и 0. После того как память вступает во взаимодействие с системой, которую необходимо запомнить, она определенно будет в одном состоянии или в другом в зависимости от состояния системы. Таким образом, память переходит от неупорядоченного состояния к упорядоченному. Однако для того чтобы память наверняка находилась в правильном состоянии, необходимо затратить некоторое количество энергии. Тепловое рассеяние этой энергии увеличивает неупорядоченность Вселенной. Можно показать, что этот рост неупорядоченности больше роста упорядоченности в памяти. Так что, когда компьютер записывает информацию в свою память, общее количество неупорядоченности во Вселенной увеличивается.

Направление времени, в котором компьютер запоминает прошлое, такое же, в каком нарастает беспорядок (энтропия). Значит, наше субъективное восприятие направления времени, психологическая стрела времени, предопределяется термодинамической стрелой. Это делает второй закон термодинамики почти тривиальным. Беспорядок возрастает во времени, потому что мы отсчитываем время в том самом направлении, в котором нарастает беспорядок. Абсолютно беспроигрышный вариант.

ГРАНИЧНЫЕ УСЛОВИЯ ДЛЯ ВСЕЛЕННОЙ

Но почему Вселенная должна была обладать очень упорядоченным состоянием на одном конце времени, том конце, который мы называем прошлым? Почему она не пребывает в состоянии полной неупорядоченности в любое время, всегда? Ведь это представляется более вероятным. И почему направление времени, в котором беспорядок нарастает, совпадает с тем, в каком расширяется Вселенная?

Начальное состояние Вселенной могло быть весьма однородным и упорядоченным. Это привело к точно определенным термодинамической и космологической стрелам времени, какие мы наблюдаем. Но с такой же вероятностью развитие Вселенной могло начаться с предельно неоднородного и беспорядочного состояния. В этом случае беспорядок в совершенно хаотической Вселенной не мог возрастать со временем. Он должен был либо оставаться постоянным (в этом случае не существовало бы никакой определенной термодинамической стрелы времени), либо уменьшаться (и тогда термодинамическая и космологическая стрелы времени были бы направлены в противоположные стороны). Ни одна из этих возможностей не согласуется с наблюдениями.

Как я упоминал, классическая общая теория относительности предсказывает, что Вселенная возникает из сингулярности, в которой кривизна пространства-времени бесконечна. По сути, это означает, что классическая общая теория относительности предсказывает собственный крах. При очень больших искривлениях пространства-времени эффекты квантовой гравитации становятся существенными и классическая теория уже не дает удовлетворительного описания Вселенной. Для того чтобы понять, как зарождалась Вселенная, надо использовать квантовую теорию гравитации.

В квантовой теории гравитации рассмотрению подлежат все возможные истории Вселенной. И каждой истории соответствует пара чисел. Одно характеризует размер волны, а второе - ее фазу (гребень или впадина). Вероятность того, что Вселенная будет обладать тем или иным специфическим свойством, определяется сложением всех волн, соответствующих историям, которые обладают этим свойством.

Истории должны представлять собой искривленные пространства, отображающие эволюцию Вселенной во времени. Но и тогда нам придется определить, как возможные истории Вселенной ведут себя на границе пространства-времени в прошлом. Мы не знаем и не можем знать граничных условий для Вселенной в прошлом. Однако этой трудности можно избежать, если граничные условия для Вселенной состоят в том, что у нее нет границы. Другими словами, все возможные истории конечны по протяженности, но не имеют ни границ, ни краев, ни сингулярностей. Все они напоминают поверхность Земли, которой приданы два дополнительных измерения. В этом случае начало времени должно быть обычной гладкой точкой в пространстве-времени. Значит, расширение Вселенной должно было начаться с очень ровного и упорядоченного состояния. Оно не могло быть совершенно однородным, потому что это нарушило бы принцип неопределенности квантовой теории. В распределениях плотности и скоростей частиц должны были иметься небольшие флуктуации. Условие об отсутствии границы, однако, лимитирует величину этих флуктуаций, сводя ее к минимально необходимому значению в соответствии с требованиями принципа неопределенности.

Развитие Вселенной должно было начаться с периода экспоненциального (инфляционного) расширения. Это привело бы к многократному увеличению ее размеров. Во время расширения флуктуации плотности сперва оставались бы не-большими, но затем начали бы расти. Расширение областей с плотностью немного выше средней было бы замедлено гравитационным притяжением избыточной массы. Рано или поздно такие области вообще прекратили бы расширяться и пережили коллапс, ведущий к образованию галактик, звезд и существ, подобных нам.

Однородная и упорядоченная вначале, Вселенная с течением времени должна была становиться неоднородной и неупорядоченной. Этим объясняется существование термодинамической стрелы времени. Вселенная должна была начаться с состояния высокой степени упорядоченности и со временем стать менее упорядоченной. Как я показал ранее, психологическая стрела времени указывает в том же направлении, что и термодинамическая. Поэтому наше субъективное восприятие времени имело бы скорее ту же направленность, что и расширение Вселенной, нежели противоположную направленность, соответствующую сжатию.

ОБРАТИМА ЛИ СТРЕЛА ВРЕМЕНИ?

Но что произошло бы, если (когда) расширение Вселенной прекратилось бы, уступив место сжатию? Не обратилась бы вспять термодинамическая стрела времени и не начал бы беспорядок сокращаться с течением времени? Для людей, переживших переход от расширения к сжатию, это обернулось бы разного рода возможностями в духе научной фантастики. Увидят ли они, как разбитые чашки сами собой складываются из осколков и вспрыгивают на стол? Сколотят ли состояние на фондовой бирже, припомнив завтрашние котировки акций?

Вам может показаться сугубо умозрительным беспокойство о том, что случится в результате коллапса Вселенной, коль скоро размеры ее не начнут сокращаться в ближайшие десять миллиардов лет. Но есть более быстрый способ определить, что случится, - прыгнуть в черную дыру. Коллапс звезды, которая должна превратиться в черную дыру, в значительной мере напоминает последние стадии коллапса всей Вселенной. Так что если беспорядок уменьшается в фазе сжатия Вселенной, можно ожидать, что он уменьшается и в черной дыре. Возможно, астронавт, угодивший в черную дыру, выиграет кучу денег в рулетку, припомнив, куда отправился шарик перед тем, как была сделана ставка. К несчастью, однако, в рулетку астронавт играл бы недолго, потому что очень сильные гравитационные поля быстро превратили бы его в лапшу. Равным образом он не смог бы ни сообщить нам, обратима ли термодинамическая стрела времени, ни положить свой выигрыш в банк, потому что навеки остался бы за горизонтом событий, пойманный в ловушку черной дыры. Поначалу я верил в уменьшение беспорядка при обратном сжатии Вселенной. А все потому, что считал, будто с уменьшением размеров Вселенная должна вернуться к упорядоченному и однородному состоянию.

Это означало бы, что в фазе сжатия время, за которое произошла стадия расширения, потечет вспять. Люди в фазе сжатия проживали бы свою жизнь от конца к началу. Умирали бы раньше, чем рождались, и молодели бы по мере сжатия Вселенной. Эта идея привлекательна, поскольку устанавливает точную симметрию между фазами расширения и сжатия. Однако ее нельзя принять саму по себе, независимо от других представлений о Вселенной. Вопрос в следующем: согласуется она или нет с предположением об отсутствии границы?

Как уже упоминалось, я поначалу думал, что условие об отсутствии границы действительно предполагает уменьшение беспорядка в фазе сжатия Вселенной. Это убеждение основывалось на работе над простой моделью Вселенной, в которой фаза сжатия похожа на обращенную во времени фазу расширения. Однако мой коллега Дон Пейдж указал, что это условие вовсе не требует со всей неизбежностью, чтобы фаза сжатия была подобна обращенной во времени фазе расширения. Позднее мой студент Раймон Лафламм обнаружил, что в чуть более сложной модели процесс сжатия Вселенной существенно отличается от расширения. Я понял, что допустил ошибку. На самом деле условие отсутствия границы не предполагало, что беспорядок будет уменьшаться в фазе сжатия. Ни в сжимающейся Вселенной, ни в черной дыре термодинамическая и психологическая стрелы времени не меняют своего направления.

Что же делать, когда обнаруживаешь, что совершил такую ошибку? Кое-кто, подобно Эддингтону, никогда не признают, что ошибались Они продолжают искать новые, зачастую взаимоисключающие, аргументы в поддержку своей позиции. Другие делают вид, будто никогда всерьез не поддерживали неверных взглядов, а если и поддерживали, то только для того, чтобы выявить их несостоятельность. Я мог бы привести множество примеров, но не стану, потому что это не прибавит мне популярности. Самым лучшим и щадящим самолюбие выходом мне представляется признание своей ошибки в печати. Хорошим примером может служить Альберт Эйнштейн, признавший, что введение космологической постоянной для обоснования стационарной модели Вселенной было величайшей ошибкой его жизни...

Интервью со Стивеном Хокингом

Би-би-си начала транслировать передачу «Диски необитаемого острова» в 1942 г., и эта программа установила на радио рекорд долговечности. К настоящему времени она стала чем-то вроде национального достояния. За все эти годы программа приняла огромное количество гостей. В ней брали интервью у писателей, артистов, музыкантов, киноактеров и кинорежиссеров, деятелей спорта, комиков, поваров, садовников, учителей, танцоров, политиков, членов королевской семьи, мультипликаторов - и ученых.

Гостей просили выбрать восемь аудиозаписей, которые они взяли бы с собой, если бы им пришлось остаться в одиночестве на необитаемом острове. Их также просили назвать предмет роскоши и книгу (предполагалось, что Библия, Тора и Коран на острове уже есть, так же как и сочинения Шекспира). Считалось само собой разумеющимся, что на острове найдутся и средства воспроизведения, когда-то - граммофон и множество игл к нему, сегодня - заряжающийся от солнечного света CD-плеер.

Программа выходила в эфир каждую неделю, и в ходе интервью, продолжавшихся, как правило, сорок минут, проигрывали записи по выбору гостей. Однако представленное здесь интервью со Стивеном Хокингом, транслировавшееся на Рождество в 1992 г., в виде исключения продолжалось дольше. Интервью брала Сью Лоули.

Сью: Стивен, будучи отрезанным от нормальной физической жизни и лишенным всех естественных средств общения, вы в некотором роде уже знакомы с тем, что ожидает человека на необитаемом острове. Насколько вам одиноко от этого?

Стивен: Я не считаю себя отрезанным от нормальной жизни и не думаю, что окружающие меня люди сказали бы, что я одинок. Я не чувствую себя инвалидом, я просто человек, у которого поражены двигательные нейроны, кто-то вроде дальтоника. Полагаю, мою жизнь не назовешь нормальной, но в духовном смысле она нормальна.

Сью: Тем не менее, в отличие от многих выброшенных на необитаемый остров, вы уже доказали себе, что духовно и интеллектуально самодостаточны, что у вас хватает пищи для размышлений и вдохновения, чтобы занять себя.

Стивен: Полагаю, я от природы немного интроверт, и трудности в общении заставили меня полагаться только на самого себя. Но в детстве я был разговорчивым. Мне нужны дискуссии с другими людьми. Я обнаружил, что изложение идей другим мне очень помогает. Даже если собеседники не высказывают ничего интересного, сама необходимость организовывать свои мысли так, чтобы они были понятны другим, часто подсказывала мне новый путь вперед.

Сью: А как же насчет эмоционального удовлетворения, Стивен? Даже блестящему физику для этого нужны другие люди.

Стивен: Физика - это прекрасно, но она холодна. Я бы не вынес жизни, в которой была бы одна только физика. Как и всем людям, мне нужны тепло, любовь и привязанность. И опять мне очень повезло, гораздо больше, чем многим другим, страдающим таким же недугом, - я получал массу любви и тепла. И музыка тоже много для меня значит.

Сью: Скажите, что доставляет вам больше удовольствия - физика или музыка?

Стивен: Должен сказать, что удовольствие, испытанное мною, когда что-то получалось в физике, сильнее того, которое мне когда-либо доставляла музыка. Но получалось у меня лишь несколько раз за всю мою карьеру, в то время как диск
можно поставить когда угодно.

Сью: И какой же диск вы поставили бы первым на необитаемом острове?

Стивен: «Gloria» Пуленка. Я впервые услышал ее прошлым летом в Аспене, в Колорадо. Аспен прежде всего лыжный курорт, но летом там собираются физики. Рядом с физическим центром стоит огромный шатер, где проходит музыкальный фестиваль. Пока вы сидите, исследуя, что получается при испарении черной дыры, слышно, как идут репетиции. Это идеально: тут сочетаются два главных удовольствия - физика и музыка. Если бы на необитаемом острове у меня были они оба, пусть бы меня оттуда и не вызволяли. То есть до тех пор, пока я не сделал бы в теоретической физике открытие, о котором захотелось бы рассказать всем. Думаю, спутниковая тарелка, благодаря которой я мог бы получать статьи по физике, уже не предусмотрена правилами игры.

Сью: Выступая по радио, можно скрыть физические дефекты, но в данном случае остается скрытым еще кое-что. Семь лет назад, Стивен, вы в полном смысле слова потеряли голос. Не могли бы вы рассказать, что же тогда случилось?

Стивен: В 1985 г. я был в Женеве, в CERN, на большом ускорителе частиц. Я собирался поехать оттуда в Байрейт, в Германию, послушать вагнеровское «Кольцо нибелунга». Но заболел воспалением легких и лег в больницу. Женевские врачи посоветовали моей жене отключить аппарат, поддерживавший мою жизнь. Но жена не хотела и слышать об этом. Меня перевезли на самолете в больницу Адденбрук, в Кембридже, где хирург по имени Роджер Грей провел трахеотомию. Операция спасла мне жизнь, но голоса я лишился.

Сью: Но к тому времени ваша речь и так была очень неразборчивой, не правда ли? Наверное, дар речи все равно покинул бы вас, да?

Стивен: Хотя моя речь и была неразборчивой, близкие меня понимали. Я мог проводить семинары с переводчиком и диктовать научные статьи. Но после операции я некоторое время был просто опустошен. Я чувствовал, что если вновь не обрету голос, то дальше жить не стоит.

Сью: Потом один компьютерщик из Калифорнии прочитал о вашем состоянии и подарил вам голос. Как он работает?

Стивен: Компьютерщика звали Уолт Уолтосц. Его теща оказалась в том же состоянии, что и я, и он разработал компьютерную программу, чтобы помочь ей общаться. Курсор двигается по экрану, и когда он оказывается на нужной строке меню, вы движением головы или глаз - а в моем случае руки - нажимаете на ключ. Таким образом можно выбирать слова в нижней части экрана. Когда набрал то, что хочешь сказать, текст можно послать на речевой синтезатор или сохранить на диске.

Сью: Но это долгое дело.

Стивен: Да, долгое - примерно в десять раз медленнее нормальной речи. Но речевой синтезатор говорит гораздо отчетливее, чем я раньше. Британцы называют его акцент американским, а американцы - скандинавским или ирландским. Но каков бы он ни был, меня все понимают. Мои старшие дети привыкли к моему естественному голосу, но младший сын, которому было всего шесть лет, когда мне сделали трахеотомию, до того никак не мог меня понять. Теперь трудностей нет. Для меня это очень важно.

Сью: Значит, что вы можете попросить заранее записать все вопросы интервьюера и остается только ответить, когда будете готовы, так?

Стивен: Для записи длинных программ вроде этой хорошо иметь вопросы заранее, чтобы не тратить время и магнитную ленту впустую. В некотором смысле это дает мне больше возможности для контроля. Но на самом деле я предпочитаю отвечать на вопросы без подготовки. Так я делаю после семинаров и популярных лекций.

Сью: Но, по вашим словам, такой процесс дает вам возможность контроля, а я знаю, как это важно для вас. Ваша семья и друзья иногда называют вас упрямым и своевольным. Вы признаете себя виновным в этих грехах?

Стивен: Любого здравомыслящего человека иногда называют упрямым. Я бы скорее назвал себя решительным. Не будь я довольно решительным, меня бы сейчас здесь не было.

Сью: Вы всегда были таким?

Стивен: Я просто хочу контролировать свою жизнь в той же степени, что и все остальные. Слишком часто жизнью инвалида управляют другие. Ни один здоровый человек не примирился бы с этим.

Сью: Давайте послушаем ваш второй диск.

Стивен: Концерт для виолончели Брамса. Это был первый долгоиграющий диск, который я купил. Произошло это в 1957 г., когда записи на 33 оборота в минуту в Британии только что появились. Мой отец считал покупку проигрывателя безрассудным транжирством, но я убедил его, что сам смогу собрать проигрыватель из купленных по дешевке частей. Этот довод показался ему, благоразумному йоркширцу, убедительным. Я вставил вертушку и усилитель в корпус от старого граммофона на 78 оборотов. Если бы он сохранился, то сейчас представлял бы собой ценность. Когда я соорудил этот проигрыватель, понадобилось что-то, чтобы крутить на нем. Один школьный
товарищ предложил Концерт для виолончели Брамса, потому что ни у кого из моих друзей подходящей записи не было. Помню, пластинка стоила тридцать пять шиллингов - по тем временам большие деньги, особенно для меня. С тех пор цены на записи выросли, но в действительности они сейчас гораздо дешевле.

Когда я впервые услышал эту запись в магазине, мне ее звучание показалось странным и не очень понравилось, но я чувствовал, что должен ее похвалить. Однако с годами она стала для меня очень много значить. Мне бы хотелось проиграть ее медленную первую часть.

Сью: Один старый друг вашей семьи сказал, что во времена вашего детства она была (цитирую) «очень интеллектуальной, очень умной и очень эксцентричной». Оглядываясь в прошлое, считаете ли вы эту характеристику верной?

Стивен: Я не могу сказать, насколько моя семья была интеллектуальной, но мы определенно не считали себя эксцентричными. Однако по меркам Сент-Олбанса мы, наверное, такими могли показаться. Когда мы жили там, это было весьма благочинное место.

Сью: Ваш отец был специалистом по тропическим болезням?

Стивен: Мой отец проводил исследования в области тропической медицины. Он довольно часто ездил в Африку испытывать новые препараты.

Сью: Значит, большее влияние на вас оказала ваша мать, а если так, то как вы охарактеризуете это
влияние?

Стивен: Нет, я бы сказал, что большее влияние оказал на меня отец. Я брал пример с него. Поскольку он был исследователем, я считал, что научные исследования - это основное занятие взрослых. Единственное
различие было в том, что меня не привлекали медицина и биология, потому что они не казались мне точными науками. Хотелось чего-то более фундаментального, и я выбрал для себя физику.

Сью: Ваша мать считает, что у вас всегда было, как она выразилась, «сильное чувство чуда». «Я видела, что его тянет к звездам», - сказала она. Вы помните это?

Стивен: Помню, как-то поздно ночью я приехал домой из Лондона. Тогда в целях экономии свет на улицах в полночь выключали. И я увидел ночное небо, каким не видел его никогда раньше, - с Млечным Путем поперек. На моем необитаемом острове не будет уличных фонарей, так что я смогу хорошо видеть звезды.

Сью: Очевидно, вы были одаренным ребенком, вы часто соперничали в домашних играх с вашей сестрой, но в школе вы могли очень отставать, и вас это вовсе не заботило, верно?

Стивен: Так было в мой первый год в сент-олбансской школе. Но должен сказать, я учился в очень одаренном классе и на экзаменах проявлял себя лучше, чем в повседневной работе. Я не сомневался, что могу учиться очень хорошо, а отставал только из-за почерка и вообще из-за неаккуратности.

Сью: Запись номер три?

Стивен: На последнем курсе в Оксфорде я прочел роман Олдоса Хаксли «Контрапункт». В романе описываются тридцатые годы и действует множество персонажей. Большинство из них вымышленные, но один, более человечный, несомненно списан с самого Хаксли. Этот персонаж убивает лидера британских фашистов - образ, нарисованный с сэра Освальда Мосли. Потом он сообщает партии о своем поступке и ставит пластинку со Струнным квартетом Бетховена, соч. 132. А в середине третьей части подходит на стук к двери - и его убивают фашисты. Вообще-то это никудышный роман, но Хаксли очень правильно выбрал музыку. Если бы я знал, что на мой остров надвигается цунами, я бы поставил третью часть этого квартета.

Сью: Вы поехали в Оксфорд, в Юниверсити-Колледж, изучать математику и физику. Там вы трудились над своими расчетами в среднем час в день. Но, как я читала, вы с удовольствием занимались греблей, пили пиво и устраивали всякие забавные розыгрыши. В чем же было дело? Почему вы не утруждали себя работой?

Стивен: Был конец пятидесятых, и большинство молодежи утратило иллюзии насчет так называемого истеблишмента. Казалось, от будущего нечего ждать, кроме изобилия и сверхизобилия. Консерваторы только что выиграли третьи выборы подряд под лозунгом «Еще никогда не было так хорошо». Мне и большинству моих современников жизнь казалась скучной.

Сью: Тем не менее вы умудрялись за несколько часов решать задачи, над которыми ваши товарищи безуспешно бились неделями. Судя по их высказываниям, они понимали, что у вас исключительный талант. А вы знали о своем таланте, как вам кажется?

Стивен: Курс физики в Оксфорде в то время был до смешного легким. Его можно было пройти, не слушая лекций, а просто посещая один-два семинара в неделю. Не требовалось запоминать много фактов, а так - несколько формул.

Сью: Но в Оксфорде - не так ли? - вы впервые заметили, что ваши руки и ноги не всегда вас слушаются. Как вы объясняли это себе в то время?

Стивен: Сказать по правде, первое, что я заметил, не могу грести как нужно. Потом я упал с лестницы в студенческом общежитии. После этого я пошел к врачу, испугавшись сотрясения мозга, но врач не нашел ничего страшного и велел лишь меньше пить пива. После выпускных экзаменов в Оксфорде я на лето поехал в Иран. По возвращении я чувствовал себя очень ослабевшим, но думал, что это от сильного желудочно-кишечного заболевания, которое там перенес.

Сью: И когда же вы все-таки сдались, признав, что серьезно больны, и решили обратиться к врачу?

Стивен: Я был тогда в Кембридже и на Рождество поехал домой. Зима 1962/63 года была очень холодной. Мама уговорила меня сходить в Сент-Олбансе на озеро покататься на коньках, хотя я и знал, что не вполне готов к этому. Я упал и поднялся с большим трудом. Мама поняла, что со мной что-то не так, и отвела меня к нашему семейному врачу.

Сью: Потом три недели в больнице. И вам сообщили самое худшее?

Стивен: Это была больница Барте в Лондоне, потому что там работал мой отец. Я пролежал две недели на обследовании, но мне не сказали, в чем дело, а только сообщили, что это не рассеянный склероз и что мой случай нетипичен. Мне не сказали, что меня ждет, но я догадывался, что дела плохи, и расспрашивать не хотелось.

Сью: В конце концов вам все-таки сказали, что жить осталось пару лет. Давайте, Стивен, на этом месте сделаем паузу и послушаем вашу четвертую запись.

Стивен: «Валькирия», действие первое. Это была другая долгоиграющая пластинка, где поют Мельхиор и Леман. Первоначально, еще до войны, она была записана на 78 оборотов, а потом, в шестидесятых, ее перенесли на долгоиграющую. После того как в 1963-м мне поставили диагноз «нейромоторное заболевание», я обратился к Вагнеру - он соответствовал моему мрачному, апокалиптическому состоянию духа. К несчастью, мой речевой синтезатор не очень хорошо образован и произносит «Вагнер», смягчая первый согласный. Мне пришлось набрать «Vargner», чтобы звучало примерно так, как надо. Четыре оперы цикла «Кольцо нибелунга» - это величайшее творение Вагнера. В 1964 г. я ходил на них
в Байрейте, в Германии, с моей сестрой Филиппой. В то время я знал «Кольцо» плохо, и «Валькирия», вторая опера тетралогии, произвела на меня огромное впечатление. Это была постановка Вольфганга Вагнера, и на сцене царила почти кромешная тьма Это история любви двух близнецов, Зигмунда и Зиглинды, разлученных в детстве. Они встретились снова, когда Зигмунд нашел убежище в доме Хундинга, мужа Зиглинды и врага Зигмунда. Я выбрал отрывок с рассказом Зиглинды о ее вынужденной свадьбе с Хундингом. В разгар торжеств в зал входит какой-то старик. Оркестр играет тему Вальхаллы, одну из самых величавых в «Кольце», потому что это Вотан, предводитель богов, отец Зигмунда и Зиглинды. Он вонзает меч в ствол дерева. Меч предназначается Зигмунду. В конце акта Зигмунд хватает меч, и они с возлюбленной скрываются в лесу.

Сью: Когда читаешь о вас, Стивен, начинает казаться, что смертный приговор, оставлявший вам всего пару лет жизни, пробудил вас, если хотите - заставил, сосредоточиться на жизни.

Стивен: Его первым следствием была депрессия. Казалось, мое состояние быстро ухудшается. Казалось, нет никакого смысла что-то делать, работать над диссертацией, поскольку я не знал, проживу ли достаточно для того, чтобы закончить ее. Но потом дела стали выправляться. Развитие болезни замедлилось, и я начал продвигаться в работе, в частности в своем доказательстве того, что Вселенная должна была начаться с Большого Взрыва.

Сью: Вы даже сказали в одном интервью, что теперь ощущаете себя более счастливым человеком, чем до болезни.

Стивен: Теперь я определенно счастливее. Раньше жизнь казалась мне скучной. Но перспектива умереть рано заставила меня понять, что жизнь стоит того, чтобы за нее держаться. Так много можно сделать, каждый может сделать так много! У меня действительно есть ощущение, что, несмотря на свое состояние, я внес значительный вклад в познания человечества. Конечно, мне очень везло, но любой может чего-то достичь, если приложит достаточно усилий.

Сью: Можете вы сказать, что не достигли бы всего этого, если бы не ваша болезнь, - или это было бы слишком просто?

Стивен: Нет, не думаю, что такое заболевание может стать для кого-то преимуществом. Но для меня оно стало меньшей бедой, чем для других, так как не помешало делать то, что я хотел. А хотел я попытаться понять, как устроена Вселенная.

Сью: Вашим вдохновителем в тот период, когда вы пытались ужиться со своим заболеванием, стала молодая женщина по имени Джейн Уайлд, с которой вы познакомились на вечеринке. Вы полюбили друг друга и поженились. Как бы вы оценили, какой частью вашего успеха обязаны Джейн?

Стивен: Без нее я бы не справился, это несомненно. Помолвка с Джейн вытащила меня из трясины уныния. А раз нам предстояло пожениться, мне нужно было получить работу и закончить диссертацию. Я начал усердно трудиться, и мне это понравилось. Мое состояние ухудшалось, и Джейн сама уха-живала за мной. На том этапе никто не предлагал нам помощи, а мы не могли себе позволить платить за уход.

Сью: И вместе вы бросили вызов врачам - и не только тем фактом, что продолжали жить, но и тем, что у вас были дети. В 1967 г. появился Роберт, в 1970-м - Люси, а в 1979-м - Тимоти. Насколько были потрясены врачи?

Стивен: Фактически, врач, поставивший мне диагноз, умыл руки. Он чувствовал, что ничего не может поделать. После постановки первоначального диагноза я его больше не видел. На самом деле моим врачом стал мой отец, и за советами я обращался к нему. По его словам, не было никаких свидетельств того, что болезнь передается по наследству. Джейн удавалось ухаживать за мной и двумя детьми. Только когда в 1974 г. мы уехали в Калифорнию, нам понадобилась помощь со стороны, сначала это был студент, живший вместе с нами, а потом сиделки.

Сью: Но вы с Джейн расстались.

Стивен: После трахеотомии мне круглосуточно нужна была сиделка. Это вносило все большую напряженность в наш брак. В конце концов я переехал в новую квартиру в Кембридже. Теперь мы живем раздельно.

Сью: Давайте еще послушаем музыку.

Стивен: «Битлз», «Please, Please Ме». После моих четырех довольно серьезных музыкальных привязанностей хотелось бы немножко развеяться. Для меня и многих других «Битлз» стали долгожданным
глотком свежего воздуха среди затхлой и нездоровой поп-музыки. Воскресными вечерами я часто слушал первую двадцатку по «Радио „Люксембург"».

Сью: Несмотря на все свалившиеся на вас почести, Стивен Хокинг, - а я должна напомнить, что вы укасовский профессор математики в Кембридже, когда-то это место занимал Исаак Ньютон, - вы решили написать популярную книгу о вашей работе. Полагаю, причина весьма простая - вы нуждались в деньгах.

Стивен: Хотя я и думал, что мог бы получить скромную сумму за популярную книжку, главная причина написания «Краткой истории времени» заключалась в том, что мне нравилась эта работа. Я был под впечатлением открытий, сделанных за последние двадцать пять лет, и хотел рассказать о них людям. Я и не предполагал, что получится так здорово.

Сью: В самом деле, она побила все рекорды и попала в Книгу рекордов Гиннесса как книга, дольше всех продержавшаяся в списке бестселлеров, и держится в этом списке до сих пор. Похоже, никто не знает, сколько экземпляров уже продано во всем мире, но явно больше десяти миллионов. Люди ее покупают, но вопрос в том, читают ли они ее?

Стивен: Я знаю, что Бернард Левин дошел лишь до двадцать девятой страницы, но мне также известно, что очень многие прочли дальше. Во всем мире люди подходят ко мне, чтобы сказать, как им понравилась моя книга. Возможно, не все осилили ее до конца, многие поняли не все прочитанное, но уловили мысль, что мы живем во Вселенной, управляемой разумными законами, которые можем открыть и понять.

Сью: Именно ваши черные дыры захватили воображение общества и оживили интерес к космологии. Вы когда-нибудь смотрели все эти «Звездные пути», где «смело ступают туда, куда ни один человек не ступал доныне» и т. д.? А если смотрели, то как вам они понравились?

Стивен: Подростком я читал много научной фантастики. Но теперь научная фантастика в основном кажется мне несколько поверхностной. Так легко написать о гиперпространстве, перемещающем или
проводящем людей, если вам не приходится включать его в гармоничную картину мира. Настоящая наука гораздо более увлекательна, потому что она реальна. Фантасты никогда и не предполагали наличия черных дыр, пока об этом не задумались ученые. Но теперь у нас есть надежные свидетельства существования черных дыр.

Сью: И что произойдет, если угодишь в черную дыру?

Стивен: Любой читатель научной фантастики знает, что случается, если угодишь в черную дыру. Вы превратитесь в спагетти. Но что интереснее, черные дыры не совершенно черные. Они постоянно испускают частицы и излучение. Это заставляет их постепенно испаряться, но что в результате происходит с черной дырой и ее содержимым, так и неизвестно. Это увлекательная область исследований, но научные фантасты еще не ухватились за нее.
Сью: И это упомянутое вами излучение, конечно же, назвали излучением Хокинга. Черные дыры открыты не вами, хотя вы продвинули знание о них, доказав, что они не совсем черные. Однако это открытие заставило вас основательно задуматься о происхождении Вселенной, не так ли?

Стивен: Сжатие звезды и образование черной дыры во многих отношениях напоминает расширение Вселенной, пущенное вспять. Звезды сжимаются, переходя из состояния с довольно низкой плотностью в состояние с очень высокой плотностью, а Вселенная расширяется, переходя из состояния с очень высокой плотностью к состоянию с меньшей плотностью. Тут есть важное различие: мы находимся вне черной
дыры, но внутри Вселенной. Однако и та и другая характеризуются тепловым излучением.

Сью: Вы говорите, будто так и неизвестно, что же в конце концов происходит с черной дырой и ее содержимым. Но я думала, что бы ни происходило, теоретически в конце концов все исчезнувшее в черной дыре, в том числе и астронавт, вернется в виде излучения Хокинга.

Стивен: Энергия массы астронавта вернется в виде излучения черной дыры. Но сам астронавт или даже частицы, из которых он состоял, не вернутся. Так что вопрос в том, что с ними произойдет. Они уничтожатся или перейдут в другую вселенную? Вот это мне и не терпится узнать. Но сам я прыгать в черную дыру не планирую.

Сью: Стивен, вы в своей работе руководствуетесь интуицией? То есть приходите к теории, которая вам нравится и привлекает вас, а потом пытаетесь доказать ее? Или как ученому вам всегда приходится прокладывать логический путь к заключению, и вы не пытаетесь заранее угадать результат?

Стивен: Я в очень большой степени полагаюсь на интуицию. Я пытаюсь угадать результат, но потом приходится его доказывать. На данном этапе я довольно часто обнаруживаю, что мои догадки не соответствуют истине, или, как в данном случае, обнаруживаю нечто такое, о чем никогда не думал. Так, стараясь доказать нечто другое, я пришел к выводу, что черные дыры не совсем черные.

Сью: Еще о музыке.

Стивен: Одним из моих любимых композиторов всегда был Моцарт. Он написал невероятно много. В этом году на мой пятидесятый день рождения мне подарили полное собрание его сочинений на CD - более двухсот часов музыки. Я все еще прокладываю путь через них. Один из величайших шедевров - его Реквием. Моцарт умер, не завершив его, и Реквием дописали его ученики по оставленным Моцартом фрагментам. Первая часть, которую мы собираемся прослушать, - единственная, полностью написанная и прооркестрованная самим Моцартом.

Сью: Очень упрощая вашу теорию (надеюсь, вы простите меня за это, Стивен), можно сказать, что
раньше вы верили, насколько я понимаю, в существование момента сотворения мира, в так называемый
Большой Взрыв, но больше не верите. Вы считаете, что не было начала и не будет конца, что Вселенная
самодостаточна. Означает ли это, что не было никакого акта творения и, следовательно, для Бога не
остается места?

Стивен: Да, вы слишком упростили. Я по-прежнему верю, что Вселенная имеет начало в реальном времени - Большой Взрыв. Но есть другой вид времени - мнимое время, направленное перпендикулярно к реальному, и во мнимом времени Вселенная не имеет ни начала, ни конца. Это означает, что она могла возникнуть по законам физики. Кто-то может сказать, что Бог велел Вселенной двигаться неким произвольным образом, недоступным нашему пониманию. Но это свидетельствует не о том, что Бог есть или Его нет, а лишь о том, что у Него не было выбора.

Сью: Но если Бога нет, как же вы объясните явления, лежащие за пределами науки, - любовь и веру, то, что люди носили и носят в душе, - да и ваше собственное вдохновение тоже?

Стивен: Любовь, вера и мораль - все это из другой области. Вы не можете вывести человеческие поступки из физических законов. Но можно надеяться, что логические заключения, которые делают физика и математика, приведут человека к нравственному поведению.

Сью: По-моему, многие считают, что вы фактически обходитесь без Бога. Так вы отрицаете это?

Стивен: Мои труды показали только, что не нужно говорить, будто путь возникновения Вселенной был предопределен личным капризом Бога. Но вопрос остается: почему она потрудилась возникнуть? Если хотите, ответом на этот вопрос может быть вмешательство Бога.

Сью: Давайте поставим запись номер семь.

Стивен: Я очень люблю оперу. Сначала я подумал, не выбрать ли исключительно диски с операми, от Глюка, Моцарта и Вагнера до Верди и Пуччини. Но под конец остановился всего на двух. В первую очередь это должен быть Вагнер, а вторым я в конце концов выбрал Пуччини. «Турандот» намного превосходит все остальные его оперы, и опять же, он умер, не закончив ее. Выбранный мною отрывок - рассказ Турандот о том, как в Древнем Китае принцессу похитили и увезли монголы. В отместку за это Турандот собирается задать поклонникам, просящим ее руки, три вопроса, а если те не смогут ответить, их ждет казнь.

Сью: Что для вас значит Рождество?

Стивен: Оно немного напоминает американский День благодарения, когда принято быть с семьей и благодарить за прошедший год. Это также повод заглянуть в грядущий год, символом которого и является рождение младенца в яслях.

Сью: А с материалистической точки зрения, каких бы подарков вы попросили? Или теперь вы такой состоятельный человек, что у вас всё есть?

Стивен: Я предпочитаю сюрпризы. Если просишь чего-то определенного, то лишаешь дарителя свободы и возможности воспользоваться своим воображением. Но я ничего не имею против, если станет известно, что я обожаю шоколадные трюфели.

Сью: Пока что, Стивен, вы прожили на тридцать лет дольше, чем вам предсказывали. У вас есть дети, хотя и говорили, что их у вас никогда не будет; вы написали бестселлер, вы перевернули представления о пространстве и времени. Что еще вы планируете сделать до того, как покинете эту планету?

Стивен: Все это оказалось возможным лишь благодаря везению: мне посчастливилось получить огромную помощь. Я рад тому, что мне уже удалось, но хотел бы сделать гораздо больше, прежде чем уйду. Не буду говорить о своей личной жизни, а в науке я хотел бы узнать, как объединить гравитацию с квантовой механикой и другими природными силами. В частности, я хочу узнать, что происходит с черной дырой, когда она испаряется.

Сью: И теперь последняя запись.

Стивен: Вам придется произнести ее название за меня. Мой речевой синтезатор - американец и во французском ни бум-бум. Эта запись - песня Эдит Пиаф «Je ne regrette rien» («Я ни о чем не жалею» франц.) . Как раз, чтобы подвести итог моей жизни.

Сью: А теперь, Стивен, если бы вы могли взять из этих восьми записей лишь одну, какая бы это оказалась?

Стивен: Должно быть, Реквием Моцарта. Я мог бы слушать его, пока не сядут батарейки в моем плеере.

Сью: А книга? Разумеется, собрание сочинений Шекспира и Библия ждут вас.

Стивен: Думаю, я взял бы «Миддлмарч» Джордж Элиот. Кажется, кто-то - возможно, Вирджиния Вулф - сказал, что это книга для взрослых. Не уверен, что я достаточно взрослый, но взял бы ее для пробы.

Сью: А предмет роскоши?

Стивен: Я попрошу большой запас крем-брюле. Для меня это олицетворение роскоши.

Сью: Значит, не шоколадные трюфели - вместо них солидный запас крем-брюле. Доктор Стивен Хокинг, большое вам спасибо за возможность прослушать ваши диски необитаемого острова и счастливого вам Рождества!

Стивен: Спасибо, что выбрали меня. Желаю вам всем счастливого Рождества с моего необитаемого острова. Держу пари, у меня погода лучше, чем у вас.

Это вымышленная история. Сюжет в целом, равно как события, описанные в романе, его действующие лица и места действия являются порождением фантазии автора или же используются условно. Любое возможное совпадение с реально существующими людьми, компаниями или событиями, имевшими место в реальности, является случайным.

Посвящается Тэйлору

Все великие империи будущего будут империями духа.

Уинстон Черчилль, 1953 г.

Если вы не знаете истории, то не знаете ничего.

Эдвард Джонстон, 1990 г.

Меня не интересует будущее. Я интересуюсь будущим будущего.

Роберт Дониджер, 1996 г.

ВВЕДЕНИЕ

Наука в конце столетия

Сто лет назад, на исходе девятнадцатого века, ученые всего мира испытывали чувство глубокого удовлетворения от сознания того, что им удалось создать исчерпывающую картину физического мира. Как выразился физик Алистер Рей: «К концу девятнадцатого столетия казалось, что известны уже все основные фундаментальные принципы, управляющие поведением физической вселенной» . Действительно, многие ученые утверждали, что изучение физики почти закончено и в ней больше не может быть сделано никаких крупных открытий; осталось лишь уточнять детали и вносить в картину завершающие штрихи.

Но вторая половина заключительного десятилетия явила свету несколько прелюбопытнейших сюрпризов. Рентген открыл лучи, проникавшие сквозь человеческую плоть. Поскольку их природу не удалось объяснить, он назвал их Х‑лучами. Два месяца спустя Анри Беккерель случайно обнаружил, что кусок урановой руды испускает некое излучение, засвечивающее фотографические пластинки. А в 1897 году был открыт электрон - носитель электричества.

И все же физики сохраняли спокойствие, уверенные в том, что существующая теория уже в ближайшее время найдет объяснение для всех этих аномалий. Никто не решился бы предсказать тогда, что не далее чем через какие‑нибудь пять лет их самодовольное представление о мире самым бесстыдным образом претерпит головокружительное изменение, в результате коего возникнет совершенно новая концепция вселенной и появятся ни на что не похожие технологии, благодаря которым повседневная жизнь на протяжении двадцатого столетия будет меняться самым невообразимым образом.

Если бы вы в 1899 году решились сказать какому‑нибудь физику, что спустя сто лет можно будет при помощи висящих в небесах спутников Земли передать в каждый дом движущиеся изображения; что бомбы невообразимой мощности станут угрожать существованию всего человеческого рода; что антибиотики помогут преодолеть инфекционные заболевания, но болезни перейдут в контрнаступление; что женщины получат избирательное право и пилюли для контроля рождаемости; что самолеты, способные взлетать и приземляться без помощи человека, будут ежечасно поднимать в воздух миллионы людей; что можно будет пересечь Атлантику со скоростью две тысячи миль в час; что люди совершат путешествие на Луну, а потом утратят к ней интерес; что в микроскопы можно будет разглядеть отдельные атомы; что люди станут носить с собой телефоны весом в несколько унций и разговаривать со всем миром без проводов и что большая часть этих чудес станет возможной благодаря устройствам размером с почтовую марку, построенным на основе новой теории, именуемой квантовой механикой, - если бы вы сказали все это, то выслушавший подобные бредни физик почти наверняка объявил бы вас сумасшедшим.

Почти ни одно из этих явлений не могло быть предсказано в 1899 году, потому что общепризнанная в то время научная теория утверждала, что подобное невозможно. А для тех немногочисленных явлений, которые невозможными не считались, таких, например, как самолет, нельзя было предположить массового применения.

Время – одно из самых загадочных понятий философии и естествознания. Это – одно из фундаментальных понятий научной картины мира. Блаженный Августин, христианский теолог и церковный деятель (354-430) признавался: пока его никто не спрашивает о том, что такое время, он это понимает, но когда хочет ответить на такой вопрос, попадает в тупик. «Душа моя горит желанием проникнуть в эту необъяснимую для нее тайну» - говорил он.

Нам известно одно неотъемлемое свойство времени – его направленность от прошлого к будущему.

Действительно, при описании любых явлений, с которыми человеку приходится иметь дело, прошлое и будущее играют разные роли. Это справедливо для физики, изучающей макроскопические явления (для микромира, на фундаментальном уровне описания этой направленности времени не существует), биологии, геологии, гуманитарных наук. Почему это именно так и не иначе? Известный физик Эддингтон придумал яркое название «стрела времени» .

Английский астрофизик Фрейд Хойл высказал мысль о связи направления времени с направлением процесса увеличение расстояния между галактиками в ходе расширения Вселенной, которое наблюдается в настоящее время. Эту идею поддержал и Эддингтон. Однако расширение Вселенной, о котором свидетельствует т.н. “красное смещение” спектральных линий в излучении удаляющихся друг от друга галактик («разбегания» галактик) не означает расширения в каждом месте , иначе расширялись бы размеры тел, а этого не наблюдается. А поскольку нет этого общего физического влияния, разбегание галактик или расширения Вселенной не может влиять на ход времени в элементарных процессах. Связь с расширением Вселенной может определять только «космологическую шкалу времени ».

Вот что говорит о времени философ Владимир Порус в беседе с корреспондентом журнала «Знание-Сила» О.Балла:

О.Б.: Мы знаем время физическое и историческое, психологическое и социальное, субъективное и объективное, измеряемое и переживаемое. Циклическое, линейное и ветвящееся. Равномерное и скачкообразное. Летящее и стоящее на месте. Пустое и насыщенное. Время математиков и философов, астрономов и поэтов, домохозяек и бездельников. Но что такое время для человека вообще? Как оно вообще возможно и почему мы можем о нем говорить? Что предшествует всем этим многообразным временам, что держит их вместе?

В.П.: Мне иногда кажется, что самые глубокие вопросы о времени человек задает в детстве. Ребенку говорят: «Прошел час». Вопрос: час чего прошел? Как ответить? Капля воды, кусочек дерева, моток проволоки, килограмм крупы, я применяю некоторую меру к какому-то предмету, веществу, я могу измерить это. Но когда говорят «час времени», я не знаю, чтo я меряю. Впоследствии ребенок поймет, что мы сравниваем различные процессы и выбираем какой-то из них в качестве меры: колебания маятника, изменения звездного неба, частоту излучения, биение сердца…

Существует и субъективное восприятие течения времени в результате психологических процессов, которые дают нам “психологическую шкалу времени”. Вопрос о психологическом времени сам по себе очень сложен. Для обычного - «природного» человека в первобытном, доцивилизованном племени время текло то быстро (например, ночью), то медленно (в минуты томительного ожидания) и сосредоточивалось в настоящем (по принципу «здесь и сейчас»). Прошлое при этом было вечным и, в то же время, одномоментным. Мы сохранили много пережитков субъективного восприятия времени. В частности, отмечая юбилейные даты, мы почти отождествляем их с первоначальным событием. У древних такое слияние было в порядке вещей. Известный психолог Эллиот Аронсон считает, что человеческая память является реконструирующей: мы не записываем прошлые события буквально, подобно магнитофону, а воссоздаем воспоминания из фрагментов, заполняя пробелы тем, что, по нашему мнению, должно было быть в тот момент. И эта реконструкция сильно зависит от внешнего мнения - человеку нетрудно внушить, что было в прошлом.

В то же время во Вселенной идет необратимый процесс роста энтропии. Не он ли определяет стрелу времени? Действительно, согласно Больцману, возрастание энтропии означает необратимость процесса и рассматривается как проявление возрастающего хаоса, постепенного “забывания” начальных условий. Таким образом,.термодинамические процессы определяют и «термодинамическую шкалу времени».

Итак, фактически мы имеем три «стрелы времени»:

  • космологическую (расширение Вселенной);
    · психологическую (субъективное восприятие, опыт);
    · термодинамическую (рост энтропии).

Тот факт, что эти «стрелы времени» в настоящее время в нашей Вселенной совпадают, является одной из загадок современной картины мира.

Говоря о стреле времени, можно упомянуть и различные «экзотические гипотезы» о природе времени, например, гипотеза многомерного времени, выдвинутая физиком Л. Барашенковым.

Будущее всегда воспринимается нами иначе, чем прошлое - это один из основных факторов нашей жизни. Однако в больших космологических масштабах и будущее, и прошлое могут выглядеть одинаково.

Наша Вселенная выглядит как-то не так. Сначала это утверждение кажется несколько странным, поскольку в распоряжении космологов имеется не так уж и много вселенных для сравнения. Как узнать, на что должна быть похожа «правильная» вселенная? Спустя долгие годы теоретических и наблюдательных исследований космологи выработали достаточно четкое представление о том, что считать «нормой», и та Вселенная, которую мы видим сейчас, не удовлетворяет этому представлению.

Автор сразу предостерегает читателя от заблуждения. На сегодняшний момент ученые обладают достаточно полной, подробной и согласованной картиной происхождения и эволюции Вселенной. Согласно современному представлению, 14 млрд лет назад пространство-время было несравненно более горячим и плотным, чем, например, внутренние области современных звезд. Расширяясь, пространство охлаждалось и становилось более разреженным. Практически все имеющиеся наблюдения объясняются такой картиной, однако наличие некоторого количества странных и необъяснимых особенностей, прежде всего в ранней Вселенной, говорит о том, что в нашем понимании истории Вселенной есть белые пятна.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

1. Фундаментальные законы физики действуют одинаково вперед и назад во времени. Однако мы ощущаем время, движущееся только в одном направлении: из прошлого в будущее. Почему так происходит?

2. Для объяснения этого факта необходимо произвести изыскания в предыстории Вселенной, в эпохе до Большого взрыва. Наша Вселенная может оказаться крохотной частью гораздо более обширной области пространства-времени, так называемой Мультиленной, которая, возможно, симметрична во времени. Другими словами, в разных частях Мультиленной время может течь вспять.

Среди таких необычных черт одна выделяется особенно ярко - это асимметрия времени во Вселенной. Физические законы микромира, во многом определяющие поведение Вселенной, одинаковы и в прошлом, и в будущем, но ранняя Вселенная - горячая, плотная, однородная - сильно отличается от окружающего нас холодного, разреженного и неоднородного пространства.

Вселенная начала свое развитие с обладающего большой упорядоченностью состояния и с тех пор становилась все более неупорядоченной. Необратимость этого процесса во времени (или просто асимметрию времени) символизирует стрела, всегда направленная из прошлого в будущее. «Стрела времени» играет важнейшую роль в нашей повседневной жизни, объясняя, почему мы, например, можем сделать из яйца омлет, но не наоборот, или почему в стакане воды никогда самопроизвольно не образуются кубики льда, или почему мы помним о событиях в прошлом, а не в будущем. Происхождение «стрелы времени» может быть последовательно прослежено вспять, вплоть до времен очень ранней Вселенной, момента Большого взрыва. Можно сказать, что каждый раз, разбивая яйцо для омлета, мы проводим настоящий космологический эксперимент, подтверждая существование «стрелы времени». Подтверждая, но, как и вся современная космология, не объясняя причины ее наличия. Эта основная загадка той Вселенной, которую мы наблюдаем, намекает на существование гораздо большего пространства-времени, недоступного наблюдениям. Она добавляет веса гипотезе о том, что мы видим лишь малую часть Мультиленной, чья динамика поможет нам объяснить необычные свойства нашей локальной области.

Загадка энтропии

Физики запрятали концепцию асимметрии времени в знаменитый второй закон термодинамики, гласящий, что энтропия замкнутой системы никогда не убывает. Грубо говоря, энтропия есть мера беспорядка системы. В XIX в. австрийский физик Людвиг Больцман объяснил энтропию в терминах различия макро- и микросостояния объекта. Так, если бы вас попросили дать физическое описание налитого в чашку кофе, вы скорее всего обратились бы к его макрохарактеристикам, а именно температуре, давлению и другим общим свойствам. Микросостояние специфицирует точное положение и скорость каждого отдельно взятого атома в рассматриваемой среде (в нашем примере в кофе). Важно отметить, что множество различных микросостояний соответствует какому-то единственному макросостоянию: ведь мы можем переместить один или два атома, из-за чего общее (макро-) состояние нашего кофе никак не изменится.

НАГЛЯДНОЕ ПРЕДСТАВЛЕНИЕ ОБ ЭНТРОПИИ

Сырое яйцо своим примером демонстрирует асимметрию времени: оно легко разбивается, но, однажды разбитое, уже не может снова стать целым - по той простой причине, что способов разбиться гораздо больше, чем собраться в целую конфигурацию. Если говорить на жаргоне физиков, разбитое яйцо обладает большей энтропией

Энтропия характеризуется числом различных микросостояний, которые соответствуют одному и тому же макросостоянию (математически энтропия есть произведение числа микросостояний на логарифм этого числа). Существует гораздо больше способов упорядочить некий набор атомов в обладающую большой энтропией конфигурацию, чем способов упорядочить атомы в конфигурацию с низкой энтропией. Поясним на примере двух несмешивающихся жидкостей. Представьте, что вы добавили в ваш кофе сливки. Существует огромное количество способов взаимного распределения молекул, при котором сливки и кофе окажутся полностью перемешанными, и сравнительно небольшое количество способов распределить их так, чтобы молекулы сливок сгруппировались, оказавшись, например, окруженными молекулами кофе. Более вероятно получить именно равномерную смесь, она обладает большей энтропией.

Таким образом, не удивительно, что в подавляющем большинстве процессов энтропия обладает тенденцией возрастать со временем. Количество состояний с высокой энтропией значительно превышает количество состояний с низкой энтропией; почти любое изменение системы ведет ее в состояние с более высокой энтропией на основе простых вероятностных принципов. Именно по этой причине сливки всегда смешиваются с кофе. Физически, конечно, возможно, что все молекулы сливок «сговорятся» расположиться одна за другой, но статистически это очень маловероятно: если бы вы ждали, пока молекулы сливок, случайно перегруппировавшись, без постороннего вмешательства образовали бы такую конфигурацию, вам пришлось бы ждать гораздо дольше, чем составляет современный возраст Вселенной. «Стрела времени» - это просто тенденция системы эволюционировать в направлении более вероятного состояния с более высокой энтропией.

КАК ГРАВИТАЦИЯ ВЛИЯЕТ НА ЭНТРОПИЮ

«Низкая энтропия» и «высокая энтропия» зависят от ситуации. Физики судят о количестве энтропии в некоторой системе, основываясь на анализе эволюции этой системы во времени. Например, если разреженный и достаточно холодный газ «чувствует» гравитацию, то он эволюциони- рует как сгусток. Энтропия такой системы растет - так, у облака энтропия высока, даже если на первый взгляд оно кажется упорядоченным (т.е. визуально проявляет признаки системы с низкой энтропией)

1. Гравитация «выключена»
2. Объем пространства фиксирован
В случае если силами гравита- ционного взаимодействия можно пренебречь, газ в заданном объеме обладает низкой энтропией, если он концентрируется в углу, и высокой энтропией, если он разлетается во все стороны. Таким образом, разлет молекул газа действительно увеличивает энтропию

1. Гравитация «включена»
2. Объем пространства фиксирован
Если вклад гравитации значим, реализуется обратная ситуация: газ увеличивает свою энтропию, сжимаясь в черную дыру. Таким образом, для гравитирующего газа предпочтительнее сформировать облако, а не разлететься. Черная дыра может вечно находиться в состоянии равновесия с окружением

1. Гравитация «включена»
2. Объем пространства увеличивается

Если рассматриваемый объем уже не фиксирован, а растет со временем, газ на начальной стадии сгущается в облака и формирует черную дыру, но потом черная дыра испаряется. Разлетающийся газ приводит к росту энтропии и к сильному разряжению пространства

Однако объяснение того, почему состояния с низкой энтропией переходят в состояния с высокой энтропией, далеко не то же самое, что ответ на вопрос, почему энтропия возрастает во Вселенной. Вопрос остается открытым: почему в начале развития Вселенной энтропия была очень низкой? Этот факт кажется очень неестественным, поскольку состояния с низкой энтропией, как мы только что выяснили на простом примере, довольно редки. Даже если допустить, что современная Вселенная обладает неким средним уровнем энтропии, все равно невозможно объяснить, почему раньше энтропия была ниже. Среди всех допустимых начальных условий развития нашей Вселенной (при которых Вселенная к настоящему моменту времени развилась бы именно в то, что мы сейчас наблюдаем), подавляющее большинство обладало бы гораздо большей, а не меньшей энтропией.

Другими словами, природа бросает космологам вызов: не объяснить, почему завтра энтропия Вселенной будет больше, чем сегодня, но понять, почему вчера энтропия была ниже, чем сегодня, а позавчера была ниже, чем вчера. Последний вопрос гораздо более сложен, чем кажется на первый взгляд, потому что мы можем проследить его логику на протяжении всего пути во времени вплоть до Большого взрыва - начала рождения времени в наблюдаемой Вселенной. Асимметрия времени - вопрос, на который должны ответить космологи.

Беспорядок пустоты

Ранняя Вселенная была ареной, где свершались великие события. Все частицы, составляющие наблюдаемую Вселенную, были сжаты в невероятно горячем и плотном крошечном объеме. Важно отметить, что частицы были распределены почти равномерно: средний контраст плотности составлял около 10–5. Постепенно, с расширением и остыванием Вселенной, гравитационное притяжение увеличивало этот контраст: области, в которых изначально было чуть больше частиц, сформировали звезды и галактики, области с небольшим недостатком частиц опустели, образовав войды (пустоты).

Гравитация стала основной силой, формирующей структуру Вселенной. К сожалению, у нас все еще нет четкого понимания эволюции энтропии в системе с учетом гравитационных взаимодействий, тесно связанных с геометрией пространства-времени. Построение единой картины мира есть цель многих современных физических теорий, например квантовой гравитации. В то время как мы можем связать энтропию среды с поведением составляющих ее молекул, мы не знаем, из чего состоит само пространство-время. Другими словами, нам не известно, каким образом гравитационные микросостояния могут быть поставлены в соответствие каждому конкретному макросостоянию.

«СТРЕЛА ВРЕМЕНИ»: ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ ЧАСТЬ I

Если энтропия всегда только возрастает, то как тогда могли сформироваться объекты, обладающие низкой энтропией, например то же яйцо? Закон энтропии применим только к замкнутым системам. Не запрещено уменьшение энтропии в открытых системах, включая кур. Курица затрачивает много энергии для того, чтобы снести яйцо.

Не могут ли некоторые процессы при взаимодействии частиц обладать встроенной «стрелой времени»? Распады некоторых элементарных частиц, например нейтральных каонов, в определенном смысле чаще случаются в одном направлении времени, а не в другом. (Физикам нет нужды путешествовать назад во времени, чтобы выявить такую асимметрию - они просто выводят эту закономерность, изучая другие свойства частиц.) Но эти процессы обратимы в противоположность росту энтропии, то есть они не объясняют «стрелу времени». Стандартная Модель физики частиц не представляется способной объяснить закон энтропии в ранней Вселенной.

Несмотря на указанные трудности, мы все же обладаем некими общими представлениями о том, как должна себя вести энтропия (рис. ниже). В случае если гравитацией можно пренебречь, как в примере с чашкой кофе, равномерное распределение частиц обладает высокой энтропией. Это условие есть состояние равновесия системы. Даже если частицы снова перегруппировались, то в макромасштабе ничего «особенного» не случится, поскольку частицы и до этого уже были основательно перемешаны. Однако если гравитацию нельзя исключить из рассмотрения и фиксировать объем, в котором эволюционирует система, то сглаженное распределение имеет сравнительно низкую энтропию. В последнем случае система очень далека от состояния равновесия. Наличие гравитации приводит к тому, что частицы группируются, образуя звезды и галактики, и энтропия, согласно второму закону термодинамики, значимо увеличивается.

Если мы захотим максимизировать энтропию в объеме, где гравитацией нельзя пренебречь, мы знаем, что произойдет: появится черная дыра. В 1970 г. Стивен Хокинг (Stephen Hawking) из ДАМПТ в Кембридже подтвердил провокационное предположение Якова Бекенштейна (Jakob Bekenstein), в настоящее время работающего в Еврейском университете в Иерусалиме, что черные дыры очень хорошо подчиняются второму закону термодинамики. Так же, как и горячие тела, для описания которых был сформулирован второй закон термодинамики, черные дыры могут излучать частицы (испаряться) и обладают большим количеством энтропии. Одиночная черная дыра с массой, составляющей около миллиона солнечных масс (подобная той, что предположительно находится в центре нашей Галактики), обладает энтропией, в сто раз превышающей энтропию всех частиц в наблюдаемой Вселенной.

Итак, со временем черная дыра испаряется согласно механизму Хокинга. Черная дыра не обладает наибольшей возможной в природе энтропией, тем не менее ее энтропия - наибольшая, которая может быть заключена в заданном объеме. Объем пространства Вселенной, по-видимому, со временем неограниченно растет. В 1998 г. астрономы открыли, что наша Вселенная ускоренно расширяется. Наиболее простое объяснение этому наблюдательному факту - наличие так называемой «темной энергии», некой формы энергии, которая существует даже в пустом пространстве и, насколько сейчас можно судить, не меняет своей плотности с его расширением. Наличие темной энергии - не единственно возможное объяснение ускоренного расширения, однако все попытки предложить что-то лучшее довольно быстро проваливаются.

ВОССТАНОВЛЕНИЕ СИММЕТРИИ ВРЕМЕНИ

Вселенная начала свое существование с плазмы высокой степени однородности и, согласно одной из космологических концепций, закончит свое существование, став почти пустым пространством. Если сказать кратко, то Вселенная эволюционирует от состояния с низкой энтропией к состоянию с высокой энтропией - конечному состоянию, которое физики называют «тепловая смерть». Однако такая модель не может объяснить, как возникло начальное состояние, обладающее низкой энтропией.

Предлагаемая автором модель включает в себя «доисторический» космологический период, захватывающий гипотетическую эпоху до Большого взрыва. Согласно этой модели, Вселенная началась с пустоты и пустотой же и закончится. Появление звезд и галактик есть просто непродолжительное отклонение от обычных условий равновесия (Рисунки схематичны; не показано расширение про- странства)


Если темная энергия не меняет своей плотности, Вселенная будет расширяться вечно. Удаленные галактики исчезнут из нашего поля зрения (см.: Кросс Л., Шеррер Р. Наступит ли конец космологии? // ВМН, № 6, 2008 ). Те же, что останутся вблизи нас, превратятся в черные дыры, которые будут испаряться в окружающую тьму, подобно тому как высыхает лужа в жаркий день. Через миллиарды лет, возможно, останется действительно пустая Вселенная. Тогда и только тогда она на самом деле будет обладать максимально возможной энтропией. Вселенная придет в состояние равновесия, и с этого момента в ней больше никогда ничего не произойдет. Может показаться странным, что пустое пространство обладает гигантской энтропией. Это звучит примерно как утверждение, что самый захламленный рабочий стол в мире - это… абсолютно пустой стол. Ведь энтропия требует наличия микросостояний, а пустое пространство, на первый взгляд, не содержит ни одного. Однако на самом деле пустое пространство обладает огромным количеством квантово-гравитационных микросостояний, сформировавшихся в ткани пространства-времени. Мы до сих пор с определенностью не знаем, что представляют собой такие состояния. Ученым не известно, как микросостояния объясняют энтропию черной дыры. Но, тем не менее, считается установленным, что в ускоряющейся Вселенной энтропия в доступном наблюдению объеме приближается к постоянному значению, пропорциональному площади границы этого объема. Энтропия, содержащаяся в этом объеме, огромна - ее гораздо больше, чем просто в материи в таком же объеме.

Прошлое и будущее

Важнейшая идея предыдущих рассуждений - подчеркнуть различие между прошлым и будущим. Вселенная начинает свое развитие из состояния с очень низкой энтропией: частицы гладко «упакованы» вместе. Вселенная эволюционирует, проходя через состояние с промежуточной энтропией: неоднородное распределение звезд и галактик, которое мы видим сегодня вокруг нас. В конце концов Вселенная достигает состояния с высокой энтропией: почти пустое пространство, изредка пересекаемое низкоэнергетическими частицами.

«СТРЕЛА ВРЕМЕНИ»: ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ ЧАСТЬ II

Почему мы помним прошлое, но не помним будущее? Для формирования достоверной памяти требуется, чтобы прошлое было упорядоченно - т.е. обладало низкой энтропией. Если энтропия высока, почти все «воспоминания» были бы случайными флуктуациями, совершенно не связанными с тем, что реально происходило в прошлом.

Почему же прошлое и будущее Вселенной так непохожи? Для объяснения, почему наша Вселенная начала свое развитие из состояния с низкой энтропией, постулировать начальные условия оказывается совершенно не достаточным. Философ Хав Прайс (Huw Price) из Сиднейского университета заметил, что любое обоснование начальных условий может быть применимо и к конечным условиям. Иначе говоря, мы допустим логическую ошибку, считая, что прошлое Вселенной было каким-то особенным, поскольку последнее утверждение изначально являлось бы тем, что подлежало доказательству. Таким образом, либо мы должны считать глубокую асимметрию времени просто некой данностью, абсолютным свойством нашей Вселенной, и избегать объяснений этого факта, либо мы должны более тщательно и терпеливо вникать в проблемы пространства и времени.

Если темная энергия не меняет своей плотности, Вселенная будет расширяться вечно

«СТРЕЛА ВРЕМЕНИ»: ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ ЧАСТЬ III

Проверяема ли теория Мультиленной? Идея о том, что Вселенная простирает- ся гораздо дальше, чем мы можем наблю- дать, не является реальной теорией - это предсказание, сделанное на основе некоторых представлений квантовой теории и гравитации. По общему признанию, это предсказание невозможно проверить напрямую. Но все физические теории заставляют нас выходить за пределы того, что мы можем непосредственно наблю- дать. Например, современная модель происхождения крупномасштабной структуры - сценарий инфляционной Вселен- ной -требует понимания физических условий до инфляции.

Многие космологи стараются связать асимметрию времени с космологической инфляцией, ранней эпохой экспоненциального расширения Вселенной. Инфляция предлагает простое и согласующееся с наблюдательными данными объяснение многих важных особенностей Вселенной. Согласно инфляционной парадигме, очень ранняя Вселенная (или, по крайней мере, некоторая ее часть) была заполнена не частицами, а временной формой темной энергии (полем инфлатона), плотность которой была гораздо больше, чем плотность темной энергии, которая наблюдается в сегодняшней Вселенной. Эта энергия и вызвала расширение Вселенной с очень большим ускорением, после чего распалась, образовав высокотемпературную плазму, позже разделившуюся на привычные нам материю и излучение. Остался лишь слабый след темной энергии, который стал значимым только в современную эпоху.

Первоначальная мотивация для теории инфляции - дать строгое объяснение хорошо подобранным условиям ранней Вселенной, в частности, большой однородности плотности материи в далеко отстоящих друг от друга областях. Ускорение, вызванное инфлатоном, практически идеально сгладило Вселенную. Все структурные особенности Вселенной до периода инфляции несущественны, поскольку инфляция стерла все следы существовавших до нее условий, оставив нам горячую, плотную, однородную раннюю Вселенную.

Парадигма инфляции оказалась очень удачной по многим причинам. Ее предсказания слабого отклонения от строгой однородности согласуются с наблюдениями флуктуаций плотности во Вселенной. Однако с точки зрения объяснения асимметрии времени многие космологи полагают ее в большой степени ловким трюком по причинам, указанным Роджером Пенроузом (Roger Penrose) из Оксфордского университета и другими. Для того чтобы инфляция началась, сверхплотная темная энергия должна была обладать довольно специфической конфигурацией. Фактически ее энтропия должна была быть гораздо меньше, чем энтропия плазмы, на которую она распалась. Это означает, что инфляция в действительности ничего не решает: она «объясняет» состояние с необычно низкой энтропией (горячая, плотная, однородная плазма) путем привлечения предположения о предыдущем состоянии с еще меньшей энтропией (однородная часть пространства, доминированная сверхплотным инфлатоном). Это просто отодвигает решение проблемы на шаг назад, к вопросу о том, почему вообще была инфляция.

Один из доводов, почему космологи привлекают инфляцию для объяснения асимметрии времени - то, что начальная конфигурация темной энергии не кажется маловероятной. Во время инфляции Вселенная была меньше сантиметра в диаметре. Такая маленькая область не может обладать большим числом микросостояний, следовательно, не так уж невероятно, что Вселенная натолкнется на микросостояние, соответствующее инфляции.

К сожалению, это интуитивное заключение обманчиво. Ранняя Вселенная, даже такая крошечная, обладает ровно тем же количеством микросостояний, что и наблюдаемая сегодня. Согласно законам квантовой механики, общее количество микросостояний системы никогда не меняется. (Энтропия возрастает не из-за роста числа микросостояний, а потому, что система естественным образом приходит в наиболее общее возможное макросостояние.) Ранняя Вселенная - точно такая же физическая система, как и поздняя Вселенная, одно эволюционирует в другое.

Среди многочисленных возможных микросостояний Вселенной лишь ничтожная часть соответствует гладкой конфигурации сверхплотной темной энергии, упакованной в крошечный объем. Условия, необходимые для начала инфляции, очень специфичны и, таким образом, описывают конфигурацию с очень низкой энтропией. Если бы вы выбирали конфигурацию Вселенной случайно, то с очень большой вероятностью не попали бы в нужные условия для начала инфляции. Таким образом, инфляция сама по себе не объясняет, почему ранняя Вселенная обладала низкой энтропией, которая просто «нужна» для начала инфляции; существование такой конфигурации просто подразумевается с самого начала.

Вселенная, симметричная во времени

Инфляция оказалась бессильна ответить на вопрос, почему прошлое отличается от будущего. Существует смелая и очень простая стратегия решения этой проблемы: возможно, очень далекое прошлое вообще никак не отличается от очень далекого будущего и тоже обладает высокой энтропией. Если это так, то горячее, плотное состояние, которое мы назвали «ранняя Вселенная», не является действительным началом Вселенной, а всего лишь представляет собой некоторое переходное состояние на пути ее эволюции.

Некоторые космологи предполагают, что Вселенная совершила «отскок». До этого события пространство сжималось, однако оно не пришло в состояние с бесконечной плотностью. Вместо этого благодаря неизвестным физическим причинам - квантовой гравитации, дополнительным измерениям пространства, суперструнам или чему-то еще - пространство стало расширяться, и такой переход от сжатия к расширению воспринимается нами сейчас как Большой взрыв. Однако и такой подход не объясняет происхождение «стрелы времени», и вот почему. Если в предыдущей вселенной, до «отскока», энтропия по мере сжатия пространства возрастала, то в этом случае «стрела времени» должна растягиваться бесконечно в прошлое. Если же энтропия уменьшалась, то получается, что состояние с низкой энтропией реализовалось почему-то посередине истории Вселенной (в момент «отскока»). В любом случае, мы снова остаемся без ответа, почему вблизи Большого взрыва энтропия была такой маленькой.

Вместо проделанных рассуждений давайте предположим, что Вселенная начала свое развитие из состояния с высокой энтропией, являющегося наиболее естественным. Хороший кандидат на такую роль - пустое пространство. Подобно любому состоянию с высокой энтропией, пустое пространство «предпочитает» оставаться неизменным, из чего сразу же возникает проблема: как же нам получить нашу сегодняшнюю Вселенную из замершего пустого пространства? Решение может предоставить темная энергия. В ее присутствии пустое пространство уже не является пустым. Флуктуации квантовых полей порождают очень низкую температуру, гораздо меньшую, чем температура современной Вселенной, но все же не равную абсолютному нулю. В такой Вселенной все квантовые поля испытывают случайные флуктуации. Следовательно, если мы подождем достаточно долго, отдельные частицы или даже совокупности частиц будут флуктуировать до своего реального появления (это именно реальные частицы, в противоположность короткоживущим «виртуальным», которые пустое пространство содержит даже в отсутствии темной энергии). Рождаются не только частицы. Флуктуирует и темная энергия, порождая сгустки повышенной плотности. Если какой-то из сгустков оказался наделенным правильными свойствами, то он подвергнется инфляционному расширению и «оторвется», сформировав дочернюю вселенную. Наша Вселенная может оказаться «плодом» какой-либо другой вселенной.

На первый взгляд, этот сценарий имеет некоторое сходство со стандартной теорией инфляции. Мы тоже полагаем, что сгусток темной энергии, обладающий повышенной плотностью, появляется случайным образом, давая начало инфляции. Разница нашей модели и модели инфляции - в природе начальных условий.

В стандартном сценарии сгусток темной энергии образуется в сильно флуктуирующей Вселенной, в которой громадное большинство флуктуаций не производит ничего похожего на инфляцию. Возможно, что для Вселенной гораздо более вероятно флуктуировать прямо в горячую стадию, минуя инфляцию. Более того, с точки зрения энтропии было бы еще более вероятно флуктуировать напрямую в ту конфигурацию, которую мы видим сегодня, минуя 14 млрд лет космологической эволюции.

В новом сценарии вселенная, существовавшая до нашей Вселенной, никогда не была подвержена случайным флуктуациям; она находилась в очень специфическом состоянии, а именно, являлась пустым пространством. Эта теория утверждает - и оставляет для дальнейшего доказательства - то, что наиболее вероятный способ создавать вселенные, подобные нашей Вселенной, из такого предыдущего состояния - это пройти инфляционный период, а не флуктуировать сразу в современную конфигурацию. Другими словами, согласно новому сценарию, Вселенная есть флуктуация, но не случайная.

Ученые обдумывают идею о дочерних вселенных уже много лет, но мы до сих пор не понимаем процесс их зарождения

«Инемерв алертс»

Данный сценарий, предложенный в 2004 г. Дженнифер Чен (Jennifer Chen) из Чикагского университета и мной, дает провокационное решение проблемы происхождения асимметрии времени во Вселенной, а именно: мы видим только малую часть большой картины, которая вся целиком полностью симметрична по времени. Энтропия может возрастать безгранично благодаря созданию новых дочерних вселенных.

Лучше всего продемонстрировать эту теорию, рассмотрев эволюцию вселенной - как по ходу времени, так и обратно во времени. Представьте, что в некий момент времени мы начали наблюдать пустое пространство и прослеживаем эволюцию этой системы в будущее и прошлое. (Эволюция системы идет в обе стороны, поскольку мы не предполагаем избранное направление «стрелы времени».) В результате флуктуаций пространства образуются дочерние вселенные, которые эволюционируют в обе стороны во времени, постепенно пустеют и порождают собственные дочерние вселенные. На сверхбольших расстояниях такая Мультиленная выглядела бы статистически симметричной относительно времени: и в будущем, и в прошлом рождались бы дочерние вселенные, умножающиеся без границ. Каждая из дочерних вселенных обладала бы «стрелой времени», но в половине из них время текло бы в одну сторону, а во второй половине - в другую.

Ни одно существо, живущее в области с обратным временем, не могло бы родиться старым и умереть молодым

ИСТОРИЯ НАБЛЮДАЕМОЙ ВСЕЛЕННОЙ

Ниже представлена краткая хронология важных событий истории наблюдаемой Вселенной

  1. Пустое пространство, лишенное каких бы то ни было особенностей, но обладающее небольшим количеством вакуумной энергии, а также редкими длинноволновыми (низкоэнергетическими) частицами, сформировавшимися в результате флуктуаций заполняющих пространство квантовых полей.
  2. Излучение высокой интенсивности начинает внезапно прилетать cо всех сторон сферическим фронтом с центром в некоторой точке пространства. Когда излучение собирается в точке, формируется так называемая «белая дыра».
  3. Белая дыра постепенно растет до миллиарда солнечных масс благодаря аккреции дополнительного излучения, обладающего растущей температурой.
  4. Другие белые дыры начинают приближаться с расстояния в миллиарды световых лет. Они формируют однородное распределение, медленно вращаясь одна около другой.
  5. Белые дыры начинают терять массу, выбрасывая газ, пыль и излучение в окружающее пространство.
  6. Газ и пыль иногда взрываются, формируя звезды, которые группируются в галактики, окружающие белые дыры.
  7. Как и белые дыры, сформировавшиеся звезды получают направленное внутрь излучение. Они используют энергию этого излучения для превращения тяжелых элементов в легкие.
  8. Звезды рассеиваются, постепенно превращаясь в равномерно распределенный газ; вещество продолжает двигаться как единое целое, становясь более плотным.
  9. Вселенная становится горячее и плотнее и в конце концов «схлопывается».

Нет нужды говорить, что это очень необычный способ описания истории нашей Вселенной - последовательность событий, обращенная назад во времени. Законы физики работают и при смене хода течения времени на противоположный. Таким образом, указанная последовательность вполне имеет право на существование наравне с привычной для нас картиной. Цель этого изложения - показать, насколько в действительности неправдоподобна вся история нашей наблюдаемой Вселенной

Идея о существовании вселенных с противоположной ориентацией «стрелы времени» может показаться тревожащей. Если бы мы встретили кого-нибудь из такой вселенной, мог бы он «помнить» будущее? К счастью, такое рандеву никогда не сможет состояться. В описываемом нами сценарии те области пространства, где время течет вспять, находятся очень далеко в нашем прошлом, задолго до нашего Большого взрыва. Между нашими мирами лежит обширная часть вселенной, в которой время, согласно нашей идее, не движется совсем; там почти нет материи, и энтропия не меняется. Заметим, тем не менее, что ни одно существо, живущее в области с обратным временем, не могло бы родиться старым и умереть молодым, либо продемонстрировать что-то еще, странное с нашей точки зрения. Для них время текло бы совершенно обычным образом. Только при сравнении двух миров наше будущее оказалось бы их прошлым и наоборот. Но такое сравнение возможно только умозрительно, поскольку мы никогда не сможем добраться до них, а они никогда не придут к нам.

Мы считаем, что на текущем этапе развития космологии нашу модель нельзя признать ни истинной, ни ложной. Ученые обдумывают идею о дочерних вселенных уже много лет, но мы до сих пор не понимаем процесс их зарождения. Если квантовые флуктуации могли бы создавать новые вселенные, они должны были бы создавать и многие другие вещи - например целую галактику.

По сценарию, подобному нашему, для объяснения той Вселенной, которую мы видим, нужно предсказать, что большинство галактик рождаются как следствия событий, аналогичных Большому взрыву, а не как одинокие флуктуации в пустом пространстве. Если это не так, то наша Вселенная кажется очень неестественной.

Подчеркнем, что наша основная цель не в том, чтобы предложить какой-либо конкретный сценарий структуры пространства-времени на сверхбольших масштабах. Главной мы считаем ту идею, что удивительное свойство нашего наблюдаемого мира - «стрела времени», берущая начало в ранней Вселенной, обладавшей низкой энтропией, - может дать нить к разгадке природы принципиально не доступной наблюдениям части Мультиленной.

Как было сказано в начале статьи, очень хорошо обладать теорией, согласующейся с реальными данными. Но некоторые космологи хотят большего: мы ищем понимания законов природы и законов развития нашей Вселенной, в которой все обладает смыслом для нас. Мы не хотим ограничивать себя, принимая странные свойства нашей Вселенной как простой набор фактов. Драматическая асимметрия времени дает нам ключи к чему-то более глубокому, к глобальному понимаю пространства и времени. Наша цель как физиков - использовать этот и другие факты для построения единой картины всей Мультиленной.

Если наблюдаемая Вселенная - это все, что существует, то «стрела времени» вряд ли может быть объяснена естественным образом. Но если Вселенная вокруг нас есть маленькая часть огромного полотна Мультиленной, то перед учеными открываются новые возможности. Мы можем считать нашу область Вселенной всего лишь отражением тенденции большой системы увеличивать свою энтропию неограниченно - как в далеком будущем, так и в далеком прошлом. Перефразируя американского физика Эдварда Триона (Edward Tryon), Большой взрыв проще понять, если не считать его началом всего, но всего лишь рядовым событием, которое происходит время от времени.

Другие исследователи работают над близкими идеями, и все больше космологов серьезно воспринимают проблему «стрелы времени». Удивительно просто наблюдать эту стрелу: все, что мы должны сделать - это добавить немного сливок в свой кофе. Прихлебывая напиток, давайте задумаемся, как такое нехитрое действо может быть прослежено на всем протяжении пути к началу нашей наблюдаемой Вселенной, а возможно, и дальше.

Перевод: О.С. Сажина

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

  • Time’s Arrow and Archimedes’ Point: New directions for the Physics of Time. Huw Price. Oxford University Press, 1996.
  • Spontaneous Inflation and the Origin of the Arrow of Time. Sean M. Carroll and Jennifer Chen. Submitted on October 27, 2004. www.arxiv.org/abs/hepth/0410270
  • Dark Energy and the Preposterous Universe. Sean M. Carroll in Sky & Telescope, Vol. 109, No. 3, pages 32–39; March 2005. Доступно на: at www.preposterousuniverse.com/writings/skytel-mar05.pdf

Шон Кэрролл (Sean M. Carroll) - старший научный сотрудник Калифорнийского технологического института. Область исследований - космология, физика частиц и общая теория относительности, в особенности вопросы темной энергии. Был награжден грантами фондов Слоана и Паккарда, а также премией за преподавание Совета по преподаванию аспирантам Массачусетсского технологического института и медалью Университета Вилланова. Вне научного сообщества Кэрролл наиболее известен как активный участник сетевого дневника Cosmic Variance. Этот электронный ресурс не только является наиболее известным блогом по науке в Америке, но и стал тем местом, где автору статьи посчастливилось встретить свою будущую жену, писательницу Дженнифер Олетт (Jennifer Oullette).

Кофе остывает, здания разрушаются, яйца разбиваются, а звезды гаснут во вселенной, которая как будто обречена на переход к серому однообразию, известному как тепловое равновесие. Астроном и философ сэр Артур Эддингтон (Arthur Eddington) в 1927 году заявил, что постепенное рассеивание энергии является доказательством необратимости «стрелы времени».

Но к недоумению целых поколений физиков, понятие стрелы времени не соответствует основным законам физики, которые во времени действуют как в прямом направлении, так и в противоположном. Согласно этим законам, если бы кто-то знал пути всех частиц во вселенной и обратил их вспять, энергия стала бы накапливаться, а не рассеиваться: холодный кофе начал бы нагреваться, здания подниматься из руин, а солнечный свет направился бы обратно к Солнцу.

«В классической физике у нас были сложности, - говорит профессор Санду Попеску (Sandu Popescu), преподающий физику в британском Бристольском университете. - Если бы я знал больше, мог бы я обратить ход события вспять и собрать воедино все молекулы разбитого яйца?»

Конечно, говорит он, стрела времени не управляется человеческим незнанием. И все же, с момента зарождения термодинамики в 1850-е годы единственным известным способом расчета распространения энергии была формула статистического распределения неизвестных траекторий частиц и демонстрация того, что с течением времени незнание смазывает картину вещей.

Теперь физики вскрывают более фундаментальный источник стрелы времени. Энергия рассеивается, и объекты приходят в равновесие, говорят они, потому что элементарные частицы при взаимодействии спутываются. Этот странный эффект они назвали «квантовым смешением», или запутанностью.

«Наконец мы можем понять, почему чашка кофе в комнате приходит в равновесие с ней, - говорит квантовый физик из Бристоля Тони Шорт (Tony Short). - Возникает смешение между состоянием чашки кофе и состоянием комнаты».

Попеску, Шорт и их коллеги Ной Линден (Noah Linden) и Андреас Уинтер (Andreas Winter) сообщили о своем открытии в журнале Physical Review E в 2009 году, заявив, что предметы приходят в равновесие, или в состояние равномерного распределения энергии, в течение неопределенно долгого времени за счет квантово-механического смешения с окружающей средой. Похожее открытие несколькими месяцами раньше сделал Питер Рейман (Peter Reimann) из Билефельдского университета в Германии, опубликовав свои выводы в Physical Review Letters. Шорт и коллеги подкрепили свои доводы в 2012 году, показав, что запутанность вызывает равновесие за конечное время. А в работе, опубликованной в феврале на сайте arXiv. org, две отдельные группы предприняли следующий шаг, рассчитав, что большинство физических систем быстро уравновешиваются за время, прямо пропорциональное их размеру. «Чтобы показать, что это применимо к нашему реальному физическому миру, процессы должны происходить в разумных временных рамках», - говорит Шорт.

Тенденция кофе (и всего остального) приходить в равновесие «очень интуитивна», считает Николас Бруннер (Nicolas Brunner), работающий квантовым физиком в Женевском университете. «Но при объяснении причин этого мы впервые имеем твердые основания с учетом микроскопической теории».

Если новое направление исследований верно, то история стрелы времени начинается с квантово-механической идеи о том, что в своей основе природа изначально неопределенна. Элементарная частица лишена конкретных физических свойств, и она определяется только вероятностями нахождения в определенных состояниях. К примеру, в определенный момент частица может с 50-процентной вероятностью вращаться по часовой стрелке и с 50-процентной против часовой. Экспериментально проверенная теорема северо-ирландского физика Джона Белла (John Bell) гласит, что нет «истинного» состояния частиц; вероятности это единственное, что можно использовать для его описания.

Квантовая неопределенность неизбежно приводит к смешению - предполагаемому источнику стрелы времени.

Когда две частицы взаимодействуют, их уже нельзя описывать отдельными, независимо развивающимися вероятностями под названием «чистые состояния». Вместо этого, они становятся перепутанными компонентами более сложного распределения вероятностей, которые описывают две частицы вместе. Они могут, например, указать на то, что частицы вращаются в противоположных направлениях. Система в целом находится в чистом состоянии, но состояние каждой частицы «смешано» с состоянием другой частицы. Обе частицы могут двигаться на расстоянии нескольких световых лет друг от друга, но вращение одной частицы будет коррелировать с другим. Альберт Эйнштен хорошо описал это как «жуткое действие на расстоянии».

«Запутанность это в некотором смысле суть квантовой механики», или законов, регулирующих взаимодействия в субатомных масштабах, говорит Бруннер. Это явление лежит в основе квантовых вычислений, квантовой криптографии и квантовой телепортации.

Идея того, что смешением можно объяснить стрелу времени, впервые 30 лет назад пришла в голову Сету Ллойду (Seth Lloyd), когда он был 23-летним выпускником факультета философии Кембриджского университета со степенью Гарварда по физике. Ллойд понял, что квантовая неопределенность и ее распространение по мере того, как частицы становятся все более перепутанными, может прийти на смену неуверенности (или незнанию) человека в старых классических доказательствах и стать истинным источником стрелы времени.

Используя малоизвестный квантово-механический подход, в котором единицы информации являются основными строительными кирпичиками, Ллойд несколько лет изучал эволюцию частиц с точки зрения перетасовки единиц и нулей. Он выяснил, что по мере того, как частицы все больше смешиваются друг с другом, информация, которая их описывала (например, 1 для вращения по часовой стрелке, и 0 - против часовой), перейдет на описание системы запутанных частиц в целом. Частицы как будто постепенно теряли свою самостоятельность и становились пешками коллективного состояния. Со временем вся информация переходит в эти коллективные скопления, а у отдельных частиц ее не остается вообще. В этот момент, как обнаружил Ллойд, частицы переходят в состояние равновесия, и их состояния перестают меняться, словно чашка кофе остывает до комнатной температуры.

«Что происходит на самом деле? Вещи становятся более взаимосвязаннями. Стрела времени - это стрела роста корреляций».

Эта идея, изложенная в докторской диссертации Ллойда в 1988 году, не была услышана. Когда ученый отправил статью об этом в редакцию журнала, ему сказали, что «в этой работе нет физики». Теория квантовой информации «была глубоко непопулярна» в то время, говорит Ллойд, и вопросы о стреле времени «были уделом психов и тронувшихся умом нобелевских лауреатов».

«Я был чертовски близок к тому, чтобы стать водителем такси», - сказал он.

С тех пор достижения в области квантовых вычислений превратили теорию квантовой информации в одну из самых активных областей физики. В настоящее время Ллойд работает профессором Массачусетского технологического института, он признан одним из основателей этой дисциплины, и его забытые идеи возрождаются усилиями физиков из Бристоля. Новые доказательства являются более общими, говорят ученые, и применимы к любой квантовой системе.

«Когда Ллойд высказал идею в своей диссертации, мир был не готов к ней, - говорит руководитель Института теоретической физики при Швейцарской высшей технической школе Цюриха Ренато Реннер (Renato Renner). - Никто не понимал его. Иногда нужно, чтобы идеи приходили в нужное время».

В 2009 году доказательства коллектива бристольских физиков нашли отклик у теоретиков квантовой информации, которые открыли новые способы применения их методов. Они показали, что по мере того, как объекты взаимодействуют с окружающей средой - как частицы в чашке кофе взаимодействуют с воздухом - информация об их свойствах «утекает и растекается по этой среде», поясняет Попеску. Эта локальная потеря информации приводит к тому, что состояние кофе остается неизменным, даже если чистое состояние всей комнаты продолжает меняться. За исключением редких случайных флуктуаций, говорит ученый, «его состояние перестает меняться во времени».

Получается, холодная чашка кофе не может спонтанно нагреться. В принципе, по мере эволюции чистого состояния комнаты, кофе может внезапно выделиться из воздуха комнаты и вернуться в чистое состояние. Но смешанных состояний гораздо больше, чем чистых, и практически кофе никогда не сможет вернуться в чистое состояние. Чтобы увидеть это, нам придется жить дольше вселенной. Эта статистическая маловероятность делает стрелу времени необратимой. «По сути дела, смешение открывает для нас огромное пространство, - говорит Попеску. - Представьте, что вы находитесь в парке, перед вами ворота. Как только вы входите в них, вы выходите из равновесия, попадаете в огромное пространство и теряетесь в нем. К воротам вы не вернетесь никогда».

В новой истории стрелы времени информация теряется в процессе квантовой запутанности, а не из-за субъективного отсутствия человеческих знаний о том, что приводит в равновесие чашку кофе и комнату. Комната в конце концов уравновешивается с внешней средой, а среда еще медленнее движется к равновесию с остальной вселенной. Гиганты термодинамики 19-го века рассматривали этот процесс как постепенное рассеяние энергии, которое увеличивает общую энтропию, или хаос вселенной. Сегодня же Ллойд, Попеску и другие специалисты из этой области рассматривают стрелу времени по-другому. По их мнению, информация становится все более диффузной, но никогда не исчезает полностью. Хотя локально энтропия растет, общая энтропия вселенной остается постоянной и нулевой.

«В целом вселенная находится в чистом состоянии, - говорит Ллойд. - Но отдельные ее части, переплетаясь с остальной частью вселенной, приходят в смешанное состояние».

Но одна загадка стрелы времени остается неразгаданной. «В этих работах нет ничего, что объясняет, почему вы начинаете с ворот, говорит Попеску, возвращаясь к аналогии с парком. - Другими словами, они не объясняют, почему изначальное состояние вселенной было далеко от равновесия». Ученый намекает на то, что этот вопрос относится к природе Большого взрыва.

Несмотря на недавние успехи в расчетах времени уравновешивания, новый подход до сих пор не может стать инструментом для расчета термодинамических свойств конкретных вещей типа кофе, стекла или необычных состояний материи. (Некоторые специалисты по традиционной термодинамике говорят, что очень мало знают о новом подходе). «Дело в том, что нужно найти критерии для того, какие вещи ведут себя как оконное стекло, а какие как чашка чая, - говорит Реннер. - Я думаю, что увижу новые работы в этом направлении, но сделать предстоит еще очень много».

Некоторые исследователи выразили сомнение в том, что этот абстрактный подход к термодинамике когда-нибудь сможет точно объяснить, как ведут себя конкретные наблюдаемые объекты. Но концептуальные достижения и новая совокупность математических формул уже помогают исследователям задаваться теоретическими вопросами из области термодинамики, например о фундаментальных ограничениях квантовых компьютеров и даже о конечной судьбе Вселенной.

«Мы все больше и больше думаем о том, что можно сделать с квантовыми машинами, - говорит Пол Скржипчик (Paul Skrzypczyk) из Института фотонных наук в Барселоне. - Допустим, система еще не находится в состоянии равновесия, и мы хотим заставить ее работать. Сколько полезной работы мы сможем извлечь? Как я смогу вмешаться, чтобы сделать что-нибудь интересное?»

Теоретик космологии из Калифорнийского технологического института Шон Кэрролл (Sean Carroll) применяет новые формулы в своей последней работе о стреле времени в космологии. «Мне интересна самая что ни на есть долгосрочная судьба космологического пространства-времени, - говорит Кэрролл, написавший книгу From Eternity to Here: The Quest for the Ultimate Theory of Time (Из бесконечности сюда. Поиски конечной теории времени). - В этой ситуации мы еще не знаем всех нужных законов физики, поэтому есть смысл обратиться к абстрактному уровню, и здесь, как мне кажется, нам поможет этот квантово-механический подход».

Спустя двадцать шесть лет после провала грандиозной идеи Ллойда о стреле времени он с удовольствием наблюдает за ее возрождением и пытается применить идеи последней работы к парадоксу информации, попадающей в черную дыру. «Думаю, сейчас все же заговорят о том, что в этой идее есть физика», - заявляет он.

А философия и подавно.

По мнению ученых, наша способность помнить прошлое, но не будущее, что является сбивающим с толку проявлением стрелы времени, также может рассматриваться как возрастание корреляций между взаимодействующими частицами. Когда читаешь записку на листе бумаги, мозг коррелирует с информацией через фотоны, которые попадают в ваши глаза. Только с этого момента вы можете запомнить, что написано на бумаге. Как отмечает Ллойд, «настоящее можно охарактеризовать как процесс установления корреляций с нашим окружением».

Фоном для устойчивого роста переплетений во всей вселенной является, конечно, само время. Физики подчеркивают, что несмотря на большие успехи в понимании того, как происходят изменения во времени, они ни на шаг не приблизились к пониманию природы самого времени или того, почему оно отличается от трех других измерений пространства (в концептуальном плане и в уравнениях квантовой механики). Попеску называет эту загадку «одним из величайших неизвестных в физике».

«Мы можем обсуждать то, что час назад наш мозг был в состоянии, которое коррелировало с меньшим числом вещей, - говорит он. - Но наше восприятие того, что время идет - это совсем другое дело. Скорее всего, нам понадобится новая революция в физике, которая расскажет об этом».